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Note 

Numerical Evaluation of a Class of Integrals by 
Integrating along a String of Saddle Points* 

1. INTRODUCTION 

This note is concerned with the numerical integration of a class of slowly 
convergent integrals of the form 

where y is large and positive. As stated in Section 2, the function 4(u) must be 
analytic and such that 4’(u) = iA(i elU[ 1 + o(l)] as u --* -im where the numerical 
values of A and v are known. Although these conditions restrict the method to a 
narrow class of integrals, such integrals do occur in a variety of technical problems 
[l-4]. For instance, in the phase modulation example discussed in Section 8, 4(u) is 
(b sin ~)/a, or in noise problems, $(a) may be a combination of exponential and 
Bessel functions. It should be noted that a separate calculation is required for each 
value of y. 

A number of methods have been proposed for dealing with (1). The Fast Fourier 
Transform works well if the convergence is not too slow or F(y) not too small. 
Integration formulas of Filon’s type can sometime be used (see [5, Sect. 2.101, where 
several methods of integrating rapidly oscillating functions are discussed). Other 
methods deal with the slow convergence by inserting convergence factors or by 
subtracting known integrals that converge at the same rate as (1). 

When y is large and positive, as will be assumed throughout this paper, it is often 
desirable to deform the path of integration in (1) so as to take advantage of the fact 
that exp(-iuy) becomes small when Im(u) +-co. When 4(u) is such that it can be 
done, a simple procedure is to tilt the positive and negative u portions of the path so 
that they remain straight lines along which Im(u) + -co. The variable of integration 
can then be changed so as to take advantage of the exponential decrease of exp(-iuy) 
[6, Sect. 61. Unfortunately when d(u) is of the type of interest here, the integrals 
taken along the tilted straight lines do not converge. However, by curving the path as 
discussed in Section 2 we can often get the integrand to decrease as O(] u ITuy) where v 
is a positive parameter appearing in the asymptotic expansion of #(a). 

*This research was sponsored by the Air Force Offke of Scientific Research, Air Force Systems 
Command, USAF, under Grant AFOSR 74-2689. 
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The curved path of integration runs close to a string of saddle points of 
exp[-iuy + d(u)]. These saddle points are discussed in Sections 3 and 4 and their 
properties are used to obtain an estimate of the truncation error in Section 5. The 
path of integration described in Section 2 can be improved by making it pass close to 
saddle points near near u = 0. This is studied in Section 6. Some remarks are made in 
Section 7 about choosing a step size for the numerical integration and the example 
g(u) = (b sin u)/u is discussed in Sections 8 and 9. 

2. CONDITIONS SATISFIED BY g(u) AND THE NEW PATH OF INTEGRATION 

We assume that 4(u) is such that (i) 

d$(u)/du = iA(i e’“[ 1 t o(l)], v>o (2) 

as u + -ice, and (ii) 4(u) is analytic in a region such that the path of integration in 
(1) can be deformed into the curve 

u = x - i ln( y/IA ]) - fiv ln( 1 t x2), (3) 

where x is real and runs from -a~ to i-co. To make condition (i) precise, we take 
arg(iu) to be zero on the negative imaginary u-axis, and assume that there is a non- 
negative number Q such that the term o( 1) in (2) tends to zero uniformly with respect 
to Re(u) as Im(u) --t -co in the region ] Re(u)] > a. 

Curve (3) is the result of a search for a path of integration that passes close to the 
saddle points of the integrand exp[ -iuy t g(u)] when 1 u ] is large. It is shown in the 
next section that (3) does indeed do this. Since saddle points are not singularities, 
there is no difficulty in deforming the original path, the real u-axis, into curve (3). 
Changing the variable of integration in (1) from u to x and using Jordan’s lemma 
carries (1) into 

F(y) = J” e-iuY+@(u) (1 - $) &-, 
-02 

in which u is regarded as a function of x defined by (3). Integral (4) is suited to 
machine calculation because u can be obtained readily from (3). The calculations 
show that (4) converges faster than (l), and that the larger y ‘is, the more rapid is the 
convergence. 

The number of points required in the numerical evaluation can be reduced by 
modifying (4) as discussed in Section 6. However, this improvement requires a study 
of the saddle points near u = 0. 
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3. THE SADDLE POINTS 

The saddle points of exp[-iuy + g(u)] are defined as the zeros of the derivative of 
the exponent; i.e., as the roots of 

0 = -iy + d+(u)/du. (5) 

When ZJ lies in the region where (2) holds, the saddle point equation becomes 

0 = -y + A(iu)-” efU[ 1 + o(l)]. (6) 

An equation satisfied by the kth saddle point, z+, when 1 uk] is large, can be 
obtained by solving (6) for efU, using exp(iu) = exp(iu - i2nk), A = (A ( exp(i arg A), 
and taking logarithms: 

uk = 2nk - arg A + v(irr + arg U& - i ln(y/]A I) - iv In I ZQ] + o( 1). (7) 

Equation (7) shows that (Re(u,)] increases linearly and ]Im(u,)] increases 
logarithmically as I kJ tends to co. 

It is convenient to associate the value 

x,=2zk-argAffnv (8) 

of x with uk. The + sign is used when k > 0 and the - sign when k < 0. This is 
suggested when we compare (7) and (8) and note that arg uk --t 0 as k-, co and 
arg uk + - II as k--t -co. With the help of (8) we can rewrite (7) as 

u,=x,-iln(y/]A))-ivln]xk]+o(l), (9) 

where o(1) -+ 0 as ]xk] + co. 
The value of u on curve (3) corresponding to x = xk differs by o(1) from uk given 

by (9). Therefore uk lies close to curve (3) when Ikl is large. 

4. CONTRIBUTION OF THE kth SADDLE POINT 

The integrand in (4) oscillates as 1x1 increases. Its peak values can be estimated if, 
in addition to condition (2), d(u) also satisfies 

#(u)=A(iu)-“efu[l +0(l)] +o(l) (10) 

on (3) as Ix]+ co. Far out on (3) the largest values of the integrand occur near the 
saddle points. At uk the saddle point equation (6) shows that 

A(iu,)-” exp(iu,) = y[ 1 + o(l)]. (11) 
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Therefore when u is at xk on curve (3) we have 

exp[-iuy +((u)] = exp[-iu,y + ((uJ + o(l)] 

= exp[-iu,y +y(l + o(l)) + o(l)] 

= IAle ( 1 
y exp[-iyx, + o(l)] 

Y lXklVY ’ 
(12) 

where (10) and (11) have been used in going from the first to the second line, and (9) 
has been used in going to the third line. 

Consequently the integrand in (4) decreases as O(]X]-“~) when 1x1 + co. Even 
when (10) is not satisfied the rate of decrease may be rapid. For example, if 4(u) is 
such that the rightmost o(l) in (10) is replaced by -C(h)“*, where C > 0 the 
integrand will decrease as 0 [ ] x ] -“’ exp(-C (x/2 ] “‘)I. 

The contribution of the region around uk to the value of the integral (4) is approx- 
imately equal to the leading term in the classical saddle point expansion. This leading 
term is [-27r//(“(u,)]“* times expression (12). Taking the logarithmic derivative of 
(2) and assuming d o( l)/du = o( 1) leads to 

#“(U/O = -y + o( 1). (13) 

Using this and Stirling’s approximation for Z(l + y) shows that the contribution is 
approximately 

r(:: y) (A Iy Ixkl-“y evl-iyq + O(l)l- 

This expression can also be obtained by considering the integral taken along the path 
of steepest descent through z.+ 

5. THE TRUNCATION ERROR 

Let F(Y; Xtnin 9 xrnax ) be the value of integral (4) when it is truncated at x = x,,,~” on 
the left and at x = xmax on the right. Let x,, < x,rn < x,,+, define the integer 1’ (large 
and negative), where x,, is given by (8). Similarly, let x,-~ < xmax Q x, define the 
integer 1. 

Then an estimate of the truncation error 

E,=F(Y)--F(Y;X,in,Xmsx) 

can be obtained by adding the contributions (14) of the appropriate saddle points: 
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The terms in (15) can add in any phase, depending on y and xk. In the worst case 
they will add in phase and, for vy > 1 and large 1’ and 1, 

IE,Jz Ply l - (1x,1’-“Y + Ix,,Il-“Y). 
r(1 +y) vy- 1 

This is a rough upper bound for the truncation error. 

6. IMPROVING THE PATH OF INTEGRATION 

The path of integration (3) is a special case (B = 1, C = 0) of the path 

u = x - i ln[ y/IA I] - fiv ln[B + (x - C)‘] (17) 

where B and C are real and B > 0. Changing the variable of integration in (1) from u 
to x by using (17) gives the generalization 

jqy) = 1” ,-iuy+Q(u) [ 1 _ B~~x-mc~,2] h 

-co 

of (4). When B and C are chosen so that the path (17) passes closer to the important 
saddle points near u = 0 than does (3), the points used in the numerical integration 
can usually be spaced farther apart. However, the truncation error remains about the 
same because the two curves approach each other when ]x I-+ co. 

The determination of the saddle points requires the solution of the saddle point 
equation (5) which is usually transcendental. Even after a saddle point has been 
determined, some judgement is required to decide whether or not is is “important.” A 
straightforward but laborious decision procedure would be, first to determine all of 
the saddle points and the paths of steepest descent from them (see the Appendix of 
Ref. [6]); then to deform the path of integration in (I), the real u-axis, into a path 
consisting of paths of steepest descent. A saddle point is not “important” if the 
deformed path does not pass through it. Fortunately we can often guess from its 
location whether or not it is important. 

When the saddle points are symmetrically located with respect to the imaginary u- 
axis we can take C = 0. If, in addition, an important saddle, point, say u,, = iv,,, lies 
on the imaginary axis, putting x = 0 in (17) and solving for B gives 

B = (IA 1 y-le-uo)y”. (1% 

7. CHOOSING THE STEP SIZE FOR NUMERICAL INTEGRATION 

The integrals (4) and (18) are both well suited to numerical integration by the 
trapezoidal rule. One of the factors that determine the step size h = dx is the value of 
h suited to integration near the saddle points far out on the tails. Experience indicates 
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that a satisfactory first trial value of h for numerical integration over a saddle point 
uk is 

h = [2/l ~“(UJ] I’*. (20) 

When Us is large we have #“(u,) z -y from (13). This suggests that in the evaluation 
of (18) we first try 

h = [2/y] “2, (21) 

then try successively smaller values of h until the desired accuracy is attained. We 
might expect the initial value of h to work better for (18) than for (4) because its path 
passes closer to the saddle points. 

8. EXAMPLE - PHASE MODULATION INTEGRAL 

As an example consider the integral 

G(Y)=~” e -ho$+bsinuVu _ I] d,, 
-cc 

(22) 

which occurs in phase modulation problems [2]. When y > 1 the path of integration 
can be deformed into (3) or (17) and the -1 within the brackets can be omitted. Then 
G(y) is given by either integral (4) or integral (18) with 

d(u) = bu-’ sin u. (23) 

As Im(u) + -co, 

(d/du) #(u) = i(b/2)(iu)-’ e’“( 1 + o( 1)) 

and comparison with (2) gives 

A = b/2, 

v= 1. 

For our example, (4) becomes 

(24) 

(25) 

G(Y) = jm ( 
ix 

exp[-iuy+bu-‘sinu] 1 -- 
1 +x2 dx, Y> 1, 

--oo 

u = x - i ln(2y/( b I) - (i/2) ln( 1 + x’). (26) 
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When we apply the trapezoidal rule to (26) for the case y = 5, b = 5 with truncation 
at xmin = -50, x,,, = 50, we obtain the results shown in the left-hand portion of the 
table below. Here h = Ax is the spacing, N is the number of points used, 
N= 2x,,, + 1, and ~(y;x,,,in,x,,,ax, h) is the value given by the trapezoidal rule. 
Actually when b is real only half as many points are needed because of the symmetry 
of the integrand. Since 4(u) satisfies (lo), (16) gives the rough upper bound 

(27) 

for the error due to truncation at x = kx,,,. 
Before we can use (18) we have to choose values of B and C that will make the 

path (17) pass through, or close to, the important saddle points near u = 0. From (5) 
the saddle points are the roots of 

iy = bu-’ cos u - bu-‘sin u. W-9 

When b is real, the saddle points are located symmetrically with respect to imaginary 
u-axis so that we can take C = 0. Furthermore, an important saddle point, say, uO, 
lies on the negative imaginary axis at u = -i2.03 when y = 5 and b = 5. In this case 
we can use (19) and get B = 14.5. Putting B = 14.5 and C = 0 in (18) (with v = 1 
and 4(u) = (b sin u)/u) and using the trapezoidal rule gives the values shown on the 
right hand side of the table. The “exact” G(5) is the value of G(5, -200,200,0.35). 

h 

G(5;-50,5O,h) G(5;-50,50,/z) 
b=S,B=l b = 5, B = 14.5 

N from (26) h N from (18) 

1.0 101 
0.50 201 
0.25 401 
0.125 801 

Trunc. error 
bound (27) 

5.636488214 1.0 101 0.481510140 
0.599444300 0.75 135 0.472416228 
0.471824812 0.50 201 0.471819965 
0.471819239 0.35 287 0.471819239 

Exact G(5) 0.47181 9266 
O.OOOOOOO65 Trunc. Error 0.000000027 

Note that the truncation error bound given by (27), 6.5 (-8), is about 2.4 times as 
large as the actual truncation error, 2.7 (-8). 

Computations for the cases y = 5, b = -5, and y = 5, b = i5 give results similar to 
those shown in the above table for y = 5, b = 5. 

Comparison of the two sides of the table shows that a good choice of B and C 
produces an appreciable increase in the efficiency of the numerical integration. 
Whether one should use (4) or (18) appears to depend on whether the cost of the 
extra points needed by (4) outweights the labor of determining the saddle points 
needed by (18). 
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6. INTEGRATION ALONG THE REAL U-AXIS 

It is interesting to compare integration along the string of saddle points, which is 
suited to large values of y, to integration along the real u-axis, which is suited to 
small values of y. 

Before we can use our example (22) for the comparison, we must deal with its slow 
convergence along the real axis. We shall use a common subtraction method and 
rewrite (22) as 

G(y) = I” e-‘“’ 
-03 

where ak(y) is the Fourier transform of the kth power of 4(u). When @(u) = 
(b sin U)/U and K is chosen to make K < 1 y 1, all of the terms in the last series in (29) 
vanish. Furthermore, the integrand ultimately decreases as 0( l/l u I”“). 

When we put Q(U) = (b sin u)/u in (29), set y = 5, b = 5, K = 5 and make several 
trial integrations with the trapezoidal rule we get (with h = du = 0.25 and truncation 
at x = *60) G(5) to nine significant figures. As it should be, this value of G(5) is 
equal to G(5, -200,200,0.35), the “exact” G(5) stated in Section 8 and obtained by 
integration (18). 

For the case y = 10, b = 5, and K = 10, single precision numerical integration of 
(29) gave only three significant figures of G(lO) because of large cancellation errors. 
On the other hand, integration of (18) with C = 0 and B = 19.1 corresponding to the 
saddle point u,, = -i2.86 gave nine significant figures (G(lO) = 0.13339 4446(-5), 
with h = Ax = 0.25 and truncation at x = f 15). 

This suggests that when b = 5 in our example, a good place to switch from (29) to 
(18), i.e., from integration along the real u-axis to integration along the string of 
saddle points, is around y = 5 or 6. 
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